Abstract

In Quito, the microbiological contamination of surface water represents a public health problem, mainly due to the lack of sewage treatment from urban wastewater. Contaminated water contributes to the transmission of many enteric pathogens through direct consumption, agricultural and recreational use. Among the different pathogens present in urban discharges, viruses play an important role on disease, being causes of gastroenteritis, hepatitis, meningitis, respiratory infections, among others.This study analyzes the presence of viruses in highly impacted surface waters of urban rivers using next-generation sequencing techniques. Three representative locations of urban rivers, receiving the main discharges from Quito sewerage system, were selected. Water samples of 500 mL were concentrated by skimmed-milk flocculation method and the viral nucleic acid was extracted and processed for high throughput sequencing using Illumina MiSeq.The results yielded very relevant data of circulating viruses in the capital of Ecuador. A total of 29 viral families were obtained, of which 26 species were associated with infections in humans. Among the 26 species identified, several were related to gastroenteritis: Human Mastadenovirus F, Bufavirus, Sapporovirus, Norwalk virus and Mamastrovirus 1. Also detected were: Gammapapillomavirus associated with skin infections, Polyomavirus 1 related to cases of kidney damage, Parechovirus A described as cause of neonatal sepsis with neurological affectations and Hepatovirus A, the etiologic agent of Hepatitis A. Other emergent viruses identified, of which its pathogenicity remains to be fully clarified, were: Bocavirus, Circovirus, Aichi Virus and Cosavirus.The wide diversity of species detected through metagenomics gives us key information about the public health risks present in the urban rivers of Quito. In addition, this study describes for the first time the presence of important infectious agents not previously reported in Ecuador and with very little reports in Latin America.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call