Abstract
In this paper, quintic parametric polynomial minimal surface and their properties are discussed. We first propose the sufficient condition of quintic harmonic polynomial parametric surface being a minimal surface. Then several new models of minimal surfaces with shape parameters are derived from this condition. We also study the properties of new minimal surfaces, such as symmetry, self-intersection on symmetric planes and containing straight lines. Two one-parameter families of isometric minimal surfaces are also constructed by specifying some proper shape parameters.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.