Abstract

In this paper, we develop quintic nonpolynomial spline methods for the numerical solution of fourth order two-point boundary value problems. Using this spline function a few consistency relations are derived for computing approximations to the solution of the problem. The present approach gives better approximations and generalizes all the existing polynomial spline methods up to order four. This approach has less computational cost. Convergence analysis of these methods is discussed. Two numerical examples are included to illustrate the practical usefulness of our methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.