Abstract

Power-law cosmology with scale factor as power of cosmic time, a ∝tα, is investigated. We review and discuss value of α obtained from various types of observation. Considering dark energy dominant era in late universe from z < 0.5, we use observational derived results from Cosmic Microwave Background (CMB) (WMAP7), Baryon Acoustic Oscillations (BAOs) and observational Hubble data to find power exponent α and other cosmological variables. α is found to be 0.99 ±0.02 ( WMAP7 + BAO +H0) and 0.99 ±0.04 (WMAP7). These values do not exclude possibility of acceleration at 1σ hence giving viability to power-law cosmology in general. When considering scenario of canonical scalar field dark energy with power-law cosmology, we derive scalar field potential, exact scalar field solution and equation of state parameter. We found that the scenario of power-law cosmology containing dynamical canonical scalar field predicts present equation of state parameter wϕ, 0 = -0.449±0.030 while the w CDM with WMAP7 data (model independent, w constant) allows a maximum (+1σ) value of wϕ, 0 at -0.70 which is off the prediction range. However, in case of varying wϕ, the wϕ, 0 value predicted from quintessential power-law cosmology is allowed within 1σ uncertainty.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call