Abstract
Many interesting applications of hyperbolic systems of equations are stiff, and require the time step to satisfy restrictive stability conditions. One way to avoid small time steps is to use implicit time integration. Implicit integration is quite straightforward for first-order schemes. High order schemes instead also need to control spurious oscillations, which requires limiting in space and time also in the linear case. We propose a framework to simplify considerably the application of high order non-oscillatory schemes through the introduction of a low order implicit predictor, which is used both to set up the nonlinear weights of a standard high order space reconstruction, and to achieve limiting in time. In this preliminary work, we concentrate on the case of a third-order scheme, based on diagonally implicit Runge Kutta (mathsf {DIRK}) integration in time and central weighted essentially non-oscillatory (mathsf {CWENO}) reconstruction in space. The numerical tests involve linear and nonlinear scalar conservation laws.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Communications on Applied Mathematics and Computation
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.