Abstract

Quinoxaline (Q), pyrido[2,3-b]pyrazine (PP) and pyrido[3,4-b]pyrazine (iPP) are used as electron acceptors (A) to design a series of D-π-A-type light-emitting materials with different donor (D) groups. By adjusting the molecular torsion angles through changing D from carbazole (Cz) to 10-dimethylacridine (DMAC) or 10H-phenoxazine (PXZ) for a fixed A, the luminescence is tuned from normal fluorescence to thermally activated delayed fluorescence (TADF). By gradually enhancing the intramolecular charge-transfer extent through combining different D and A, the emission color is continuously and regularly tuned from pure blue to orange-red. Organic light-emitting diodes (OLEDs) containing these compounds as doped emitters exhibit bright electroluminescence with emission colors covering the entire visible-light range. An external quantum efficiency (ηext ) of 1.2 % with excellent color coordinates of (0.16, 0.07) is obtained for the pure-blue OLED of Q-Cz. High ηext values of 12.9 (35.9) to 16.7 % (51.9 cd A-1 ) are realized in the green, yellow, and orange-red TADF OLEDs. All PP- and iPP-based TADF emitters exhibit superior efficiency stabilities to that of analogues of Q. This provides a practical strategy to tune the emission color of Q, PP, and iPP derivatives with the same molecular skeletons over the entire visible-light range.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.