Abstract

NAD(P)H:quinone oxidoreductase 1 (NQO1), a redox-regulated flavoenzyme, plays a central rolein monitoring cellular redox state. NQO1 acts to protect against oxidative stress induced by a variety of metabolic situations, including metabolism of quinones and other xenobiotics, by: (i)functioning as a two electron donor to provide a shunt that competes with the formation of reactive oxygen species; (ii) maintaining reduced coenzyme Q; and (iii) regulating the stress activated kinase pathway. In Alzheimer's disease, while there is abundant evidence for the involvement of oxidative stress, the cause or the consequences are largely unresolved. We suspected that increased NQO1 could signal a major shift in redox balance in Alzheimer's disease and, in this study, found that NQO1 is localized not only to neurofibrillary tangles but also the cytoplasm of hippocampal neurons. By marked contrast, there is very little NQO1 in the same neuronal populations in young and age-matched controls. This novel association of NQO1 further buttresses the nexus of oxidative stress, via free radicals, with selective neuronal vulnerability and also supports a fundamental abnormality in redox balance in Alzheimer's disease.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.