Abstract

Quinolizidine alkaloids (QAs) are toxic secondary metabolites found within the genus Lupinus, some species of which are commercially important grain legume crops including Lupinus angustifolius (narrow-leafed lupin, NLL), L. luteus (yellow lupin), L. albus (white lupin), and L. mutabilis (pearl lupin), with NLL grain being the most largely produced of the four species in Australia and worldwide. While QAs offer the plants protection against insect pests, the accumulation of QAs in lupin grain complicates its use for food purposes as QA levels must remain below the industry threshold (0.02%), which is often exceeded. It is not well understood what factors cause grain QA levels to exceed this threshold. Much of the early work on QA biosynthesis began in the 1970–1980s, with many QA chemical structures well-characterized and lupin cell cultures and enzyme assays employed to identify some biosynthetic enzymes and pathway intermediates. More recently, two genes associated with these enzymes have been characterized, however, the QA biosynthetic pathway remains only partially elucidated. Here, we review the research accomplished thus far concerning QAs in lupin and consider some possibilities for further elucidation and manipulation of the QA pathway in lupin crops, drawing on examples from model alkaloid species. One breeding strategy for lupin is to produce plants with high QAs in vegetative tissues while low in the grain in order to confer insect resistance to plants while keeping grain QA levels within industry regulations. With the knowledge achieved on alkaloid biosynthesis in other plant species in recent years, and the recent development of genomic and transcriptomic resources for NLL, there is considerable scope to facilitate advances in our knowledge of QAs, leading to the production of improved lupin crops.

Highlights

  • Quinolizidine alkaloids (QAs) are secondary metabolites that occur mostly within the family Leguminosae and they can occur in the genus Lupinus, as well as in Baptisia, Thermopsis, Genista, Cytisus, Echinosophora, and Sophora (Ohmiya et al, 1995)

  • While QAs offer the plants protection against insect pests, the accumulation of QAs in lupin grain complicates its use for food purposes as QA levels must remain below the industry threshold (0.02%), which is often exceeded

  • There is strong evidence for the synthesis of QAs in aerial tissues of lupin as opposed to roots: lupin lysine/ornithine decarboxylase (L/ODC) is localized to chloroplasts (Wink and Hartmann, 1982b; Bunsupa et al, 2012a), La-L/ODC transcript level is highest in young leaves of bitter narrowleafed lupin (NLL), while barely detectable in mature leaves, cotyledons, hypocotyls and roots (Bunsupa et al, 2012a), cadaverine is incorporated into lupanine in aerial tissue but not in roots (Wink, 1987b) and grafting experiments in lupin, whereby high-QA lupin scions are grafted onto low-QA lupin roots and vice versa, show that shoots are more important than roots in determining overall plant QA content (Waller and Nowacki, 1978; Lee et al, 2007)

Read more

Summary

INTRODUCTION

Quinolizidine alkaloids (QAs) are secondary metabolites that occur mostly within the family Leguminosae and they can occur in the genus Lupinus, as well as in Baptisia, Thermopsis, Genista, Cytisus, Echinosophora, and Sophora (Ohmiya et al, 1995). Lupinus is a diverse genus, though only four species have been domesticated and are agriculturally significant: L. angustifolius (NLL), L. albus (white lupin), L. luteus (yellow lupin), and L. mutabilis (pearl lupin; Petterson et al, 1998). These species have been domesticated relatively recently (Cowling et al, 1998) and as a consequence of this, undesirable traits such as the accumulation of QAs remain. We discuss what is currently known about QA biosynthesis in lupin, draw on examples from model alkaloid species, and suggest future directions and ways to improve QA biosynthesis in lupin to produce higher-value lupin crops

QUINOLIZIDINE ALKALOIDS AND BIOSYNTHESIS
Lupin species
LOCALIZATION OF QA BIOSYNTHESIS AND TRANSPORT OF QAS
GENES CONTROLLING QA CONTENT IN LUPINS
Regulators of Alkaloid Biosynthesis
ENVIRONMENTAL FACTORS AFFECTING QA PRODUCTION
QA QUANTIFICATION METHODS
Findings
FUTURE PROSPECTS

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.