Abstract

This study describes the discovery of a variety of quinoline2-one derivatives with significant antibacterial action vs a spectrum of multidrug-resistant Gram-positive bacterial strains, especially methicillin-resistant Staphylococcus aureus (MRSA). Compounds 6c, 6l, and 6o exhibited significant antibacterial activity versus the Gram-positive bacterial pathogens evaluated. In comparison to the reference daptomycin, compound 6c demonstrated the most effective activity among the assessed derivatives, with MIC concentrations of 0.75 μg/mL versus MRSA and VRE and 2.50 μg/mL against MRSE. We also reported on these compounds' biofilm and dihydrofolate reductase inhibitory activities. Compound 6c showed the greatest antibiofilm action in a dose-dependent way and a substantial decrease of biofilm development in the MRSA ACL51 strain at concentrations of 0.5, 0.25, and 0.12 MIC, with reductions of 79%, 55%, and 38%, consecutively, whereas the corresponding values for vancomycin were 20%, 12%, and 9%. These findings imply that these quinoline compounds could be used to develop a new category of antibiotic representatives to prevent Gram-positive drug-resistant bacterial strains.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call