Abstract

In current work, quince seed mucilage and β-Cyclodextrin based pH regulated hydrogels were developed using aqueous free radical polymerization to sustain Capecitabine release patterns and to overcome its drawbacks, such as high dose frequency, short half-life, and low bioavailability. Developed networks were subjected to thermal analysis, Fourier transforms infrared spectroscopy, powder x-ray diffraction, elemental analysis, scanning electron microscopy, equilibrium swelling, and in-vitro release investigations to assess the network system's stability, complexation, morphology, and pH responsiveness. Thermally stable pH-responsive cross-linked networks were formed. Nanocomposite hydrogels were prepared by incorporating Capecitabine-containing clay into the swollen hydrogels. All the formulations exhibited equilibrium swelling ranging from 67.98 % to 92.98 % at pH 7.4. Optimum Capecitabine loading (88.17 %) was noted in the case of hydrogels, while it was 74.27 % in nanocomposite hydrogels. Excellent gel content (65.88 %–93.56 %) was noticed among developed formulations. Elemental analysis ensured the successful incorporation of Capecitabine.Nanocomposite hydrogels released 80.02 % longer than hydrogels after 30 h. NC hydrogels had higher t1/2 (10.57 h), AUC (121.52 μg.h/ml), and MRT (18.95 h) than hydrogels in oral pharmacokinetics. These findings imply that the pH-responsive carrier system may improve Capecitabine efficacy and reduce dosing frequency in cancer therapy. Toxicity profiling proved the system's safety, non-toxicity, and biocompatibility.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call