Abstract

A trans-membrane receptor tyrosine kinase, cMET, belonging to the MET proto-oncogene family, is responsible for cancer metastasis and angiogenesis. But not much is known about the role of cMET in growth and progression of cancer stem cells (CSCs). Earlier studies have shown that Quinacrine (QC), a bioactive agent, has anti-CSCs activity. Here, the role of QC in deregulation of cMET-mediated metastasis and angiogenesis has been systematically evaluated in vitro in highly metastatic breast CSCs (mBCSCs), ex vivo in patient-derived breast cancer stem cells (PDBCSCs) and in vivo in xenograft mice model systems. Cell proliferation, migration, invasion and representative metastasis markers were upregulated in cMET-overexpressed cells and QC exposure inhibited these processes in both mBCSCs and PDBCSCs. Interestingly, metastasis was significantly inhibited by QC in cMET-overexpressed cells but comparatively lesser significant alteration of the process was noted in cMET-silenced cells. Increase in vascularization (in in ovo CAM assay), and cell-cell tube formation (in HUVECs), and enhanced MMP9 and MMP2 enzymatic activities (in gelatin zymography) were noted after cMET overexpression but these processes got reversed after cMET knockdown or QC treatment in cMET-overexpressed cells. QC inhibited angiogenesis significantly in cMET-overexpressed cells, but lesser significant change was observed in cMET-silenced cells. Reduction in tumor volume and decreased expression of metastatic and angiogenic markers were also noted in xenograft mice after QC treatment. Furthermore, QC inhibited cMET activity by dephosphorylation of its tyrosine residues (Y1234 and Y1356) and downregulation of its downstream cascade. Thus, QC inhibited the cMET-mediated metastasis and angiogenesis in in vitro, in ovo, in vivo and ex vivo model systems. Ligand (HGF) binding leads to receptor dimerization and phosphorylation of tyrosine kinase domain of cMET. This activates the cMET signaling cascade. The representative downstream metastasis and angiogenesis-related proteins get upregulated and induce the metastasis and angiogenesis process. But after the QC treatment, cMET get dephosphorylated and inactivated. As a result, the downstream signaling proteins of cMET along with the other representative metastatic and angiogenic factors get downregulated. These lead to inhibition of cMET-mediated metastasis and angiogenesis. (Created with BioRender.com).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call