Abstract
We have used five years of measurements on board the ROCSAT‐1 satellite to develop a detailed quiet time global empirical model for equatorial F region vertical plasma drifts. This model describes the local time, seasonal and longitudinal dependence of the vertical drifts for an altitude of 600 km under moderate and high solar flux conditions. The model results are in excellent agreement with measurements from the Jicamarca radar and also from other ground‐based and in situ probes. We show that the longitudinal dependence of the daytime and nighttime vertical drifts is much stronger than reported earlier, especially during December and June solstice. The late night downward drift velocities are larger in the eastern than in the western hemisphere at all seasons, the morning and afternoon December solstice drifts have significantly different longitudinal dependence, and the daytime upward drifts have strong wave number‐four signatures during equinox and June solstice. The largest evening upward drifts occur during equinox and December solstice near the American sector. The longitudinal variations of the evening prereversal velocity peaks during December and June solstice are anti‐correlated, which further indicates the importance of conductivity effects on the electrodynamics of the equatorial ionosphere.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.