Abstract

Adding a physical watermarking signal to the control input of a networked control system increases the detection probability of data deception attacks at the expense of increased control cost. This paper proposes a parsimonious policy to limit the average number of watermarking events when the attack is not present, which in turn reduces the control cost. We model the system as a stochastic optimal control problem and apply dynamic programming to minimize the average detection delay (ADD) for fixed upper bounds on false alarm rate (FAR) and an average number of watermarking events (ANW) before the attack. Under practical circumstances, the optimal solution results in a two threshold policy on the posterior probability of attack, derived from the Shiryaev statistics for sequential change detection and assuming the change point is a random variable. We derive asymptotically approximate analytical expressions of ADD and FAR, applying the non-linear renewal theory for non-independent and identically distributed data. The derived expressions reveal that ADD reduces with the increase in the Kullback–Leibler divergence (KLD) between the post- and pre-attack distributions of the test statistics. Therefore, we further design the optimal watermarking that maximizes the KLD for a fixed increase in the control cost. The relationship between the ANW and the increase in control cost is also derived. Simulation studies are performed to illustrate and validate the theoretical results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.