Abstract
Many real-time brain-machine interface (BMI) applications require quickest detection of abrupt changes in observed neural signals in an online manner. In the presence of multi-neuronal recordings, we propose both model-based and model-free approaches to detect the change in neuronal ensemble spiking activity. The model-based approach is motivated from state space modeling and recursive Bayesian filtering. The model-free approach is motivated from the CUSUM algorithm that computes the cumulative log-likelihood statistics. In the application of detecting the onset of acute thermal pain signals, we validate these approaches using experimental population spike data recorded from freely behaving rats.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.