Abstract

In the quickest change detection problem in which both nuisance and critical changes may occur, the objective is to detect the critical change as quickly as possible without raising an alarm when either there is no change or a nuisance change has occurred. A window-limited sequential change detection procedure based on the generalized likelihood ratio test statistic is proposed. A recursive update scheme for the proposed test statistic is developed and is shown to be asymptotically optimal under mild technical conditions. In the scenario where the post-change distribution belongs to a parametrized family, a generalized stopping time and a lower bound on its average run length are derived. The proposed stopping rule is compared with the FMA stopping time and the naive 2-stage procedure that detects the nuisance or critical change using separate CuSum stopping procedures for the nuisance and critical changes. Simulations demonstrate that the proposed rule outperforms the FMA stopping time and the 2-stage procedure, and experiments on a real dataset on bearing failure verify the performance of the proposed stopping time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.