Abstract

BackgroundThe element selenium (Se) deficiency is thought to be a global human health problem, which could disperse by daily-supplement from Se-rich food. Increasing the accumulation of Se in rice grain is an approach matched to these nutrient demands. Nonetheless, Se is shown to be essential but also toxic to plants, with a narrow margin between deficiency and toxicity. Notably, the regulatory mechanism balancing the accumulation and tolerance of Se in Se-rich rice plants remains unknown.ResultsIn this study, we investigated the phenotypical, physiological, and biochemical alterations of Se-rich rice in the exposure to a variety of Se applications. Results showed that the Se-rich rice was able to accumulate more abundance of Se from the root under a low Se environment comparing to the Se-free rice. Besides, excessive Se led to phytotoxic effects on Se-rich rice plants by inducing chlorosis and dwarfness, decreasing the contents of antioxidant, and exacerbating oxidative stresses. Furthermore, both phosphate transporter OsPT2 and sulfate transporters OsSultr1;2 may contribute to the uptake of selenate in rice.ConclusionsSe-rich red rice is more sensitive to exogenous application of Se, while and the most effective application of Se in roots of Se-rich rice was reached in 20 μM. Our findings present a direct way to evaluate the toxic effects of Se-rich rice in the Se contaminated field. Conclusively, some long-term field trial strategies are suggested to be included in the evaluation of risks and benefits within various field managements.

Highlights

  • The element selenium (Se) deficiency is thought to be a global human health problem, which could disperse by daily-supplement from Se-rich food

  • The Se-rich rich is more sensitive to the application of Se than the Se-free rice variety To reveal the physiological responses to Se, the seedlings of the Se-rich red-grain rice Z2057A/CR727 and the control Se-free rice CR727 were subjected to a range of exogenous Se treatments

  • With the increasing of Se, the Se-induced increase and inhibition of root elongations occurred earlier in Z2057A/CR727 than in CR727, at 10 μMv.s. 20 μM and 40 μMv.s. 80 μM, respectively, indicating that the Se-rich rice is more sensitive to the application of Se than its Se-free counterpart

Read more

Summary

Introduction

The element selenium (Se) deficiency is thought to be a global human health problem, which could disperse by daily-supplement from Se-rich food. The regulatory mechanism balancing the accumulation and tolerance of Se in Se-rich rice plants remains unknown. Liang et al BMC Plant Biology (2019) 19:559 development, ranging from regulating plant photosynthesis and respiration, reducing free radicals damages, enhancing plant stress resistance, to alleviating the heavy metals-induced toxicity [1, 6]. It can increase the contents of chlorophyll and carotenoid leaves, reducing damages caused by ultraviolet-induced oxidative stresses [8,9,10]. It has been demonstrated that Se exhibits either beneficial or toxic effects on plant growth and development in a low or high concentration, respectively. The role of Se in plant physiology has not yet been elucidated [12]

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.