Abstract

Accumulation of beta-amyloid aggregates (Abeta) in the brain is linked to the pathogenesis of Alzheimer's disease (AD). We report a novel approach for producing 1,4-diphenyltriazoles as probes for targeting Abeta aggregates in the brain. The imaging probes, a series of substituted tricyclic 1,4-diphenyltriazoles showing excellent binding affinities to Abeta aggregates (Ki = 4-30 nM), were conveniently assembled by "click chemistry." Two radioiodinated probes, [125I]10a and [125I]10b, and two radiofluorinated probes, [18F]17a and [18F]17b, exhibited moderate lipophilicities and showed excellent initial brain penetrations and fast washouts from the normal mouse brain. In vitro autoradiography of postmortem AD brain sections and homogenates showed that these triazoles were binding to Abeta plaques. Preliminary results strongly suggest that use of click chemistry, which led to a 1,4-diphenyltriazole-based core, is a highly convenient and flexible approach for assembling novel imaging agents for targeting Abeta aggregates in senile plaques in the living human brain.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.