Abstract

The upper part of a nodulated soybean root hydroponically cultured in a glass bottle was monitored using a computer microscope under controlled environmental conditions, and the diameter of individual nodules was measured from 10-24 d after planting. The diameter of a root nodule attached to the primary root increased from 1 mm to 6 mm for 2 weeks under nitrogen-free conditions. The increase in diameter of the nodules was almost completely stopped after 1 d of supplying 5 mM nitrate, and was due to the cessation of nodule cell expansion. However, nodule growth quickly returned to the normal growth rate following withdrawal of nitrate from the solution. The reversible depression of nodule growth by nitrate was similar to the restriction of photoassimilate supply by continuous dark treatment for 2 d followed by normal light/dark conditions. In addition, the inhibitory effect of nitrate was partially alleviated by the addition of 3% (w/v) sucrose to the medium. Plant leaves were exposed to (11)C or (14)C-labelled carbon dioxide to investigate the effects of 5 mM nitrate on the translocation and distribution of photosynthates to nodules and roots. Supplying 5 mM nitrate stimulated the translocation rate and the distribution of labelled C in nitrate-fed parts of the roots. However, the (14)C partitioning to nodules decreased from 9% to 4% of total (14)C under conditions of 5 mM nitrate supply. These results indicate that the decrease in photoassimilate supply to nodules may be involved in the quick and reversible nitrate inhibition of soybean nodule growth.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.