Abstract

Endocrine Disruptor Chemicals are synthetic or natural molecules in the environment that promote adverse modifications of endogenous hormone regulation in humans and/or in animals. In the present research, we have applied two-dimensional quantitative structure-activity relationship (2D-QSAR) modeling to analyze the structural features of these chemicals responsible for binding to the androgen receptors (logRBA) in rats. We have collected the receptor binding data from the EDKB database (https://www.fda.gov/science-research/endocrine-disruptor-knowledge-base/accessing-edkb-database) and then employed the DTC-QSAR tool, available from https://dtclab.webs.com/software-tools, for dataset division, feature selection, and model development. The final partial least squares model was evaluated using various stringent validation criteria. From the model, we interpreted that hydrophobicity, steroidal nucleus, bulkiness and a hydrogen bond donor at an appropriate position contribute to the receptor binding affinity, while presence of electron rich features like aromaticity and polar groups decrease the receptor binding affinity. Additionally we have also performed chemical Read-Across predictions using Read-Across-v3.1 available from https://sites.google.com/jadavpuruniversity.in/dtc-lab-software/home, and the results for the external validation metrics were found to be better than the QSAR-derived predictions. The best quality of external predictions emerged from the q-RASAR approach which combines both read-across and QSAR. To explore the essential features responsible for the receptor binding, pharmacophore mapping, molecular docking along with molecular dynamics simulation were also performed, and the results are in accordance with the QSAR/q-RASAR findings.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.