Abstract
Recently, QUIC for the secure and faster connections has standardized but it is unclear that QUIC can cope with website fingerprinting (WF), a technique to infer visited websites from network traffic, since most existing efforts targeted TCP-induced traffic. To this end, we propose a novel QUIC WF technique based on Automated Machine Learning (AutoML). In our approach, we revisit traffic features appeared in literature, but relies on an AutoML framework to achieve best practice without manual intervention. Through experiments, we show that our technique outperforms state-of-the-art WF techniques with an F1-score of 99.79% and a 20-precision of 92.60%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.