Abstract

AbstractA multiple fractional Brownian motion (FBM)-based traffic model is considered. Various lower bounds for the overflow probability of the associated queueing system are obtained. Based on a probabilistic bound for the busy period of an ATM queueing system associated with a multiple FBM-based input traffic, a minimal dynamic buffer allocation function (DBAF) is obtained and a DBAF-allocation algorithm is designed. The purpose is to create an upper bound for the queueing system associated with the traffic. This upper bound, called a DBAF, is a function of time, dynamically bouncing with the traffic. An envelope process associated with the multiple FBM-based traffic model is introduced and used to estimate the queue size of the queueing system associated with that traffic model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.