Abstract

We analyze an infinite-buffer batch-size-dependent batch-service queue with Poisson arrival and arbitrarily distributed service time. Using supplementary variable technique, we derive a bivariate probability generating function from which the joint distribution of queue and server content at departure epoch of a batch is extracted and presented in terms of roots of the characteristic equation. We also obtain the joint distribution of queue and server content at arbitrary epoch. Finally, the utility of analytical results is demonstrated by the inclusion of some numerical examples which also includes the investigation of multiple zeros.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.