Abstract

We propose algorithms for cloud radio access networks that not only provide heterogeneous quality of-service (QoS) for rate- and, importantly, delay-sensitive applications, but also jointly optimize the frequency reuse pattern. Importantly, unlike related works, we account for random arrivals, through queue awareness and, unlike the majority of works focusing on a single frame only, we consider QoS measures averaged over multiple frames involving a set of closed loop controls. We model this problem as multi-cell optimization to maximize a sum utility subject to the QoS constraints, expressed as minimum mean-rate or maximum mean-delay. Since we consider dynamic interference coordination jointly with dynamic user association, the problem is not convex, even after integer relaxation. We translate the problem into an optimization of frame rates, amenable to a decomposition into intertwined primal and dual problems. The solution to this optimization problem provides joint decisions on scheduling, dynamic interference coordination, and, importantly, unlike most works in this area, on dynamic user association. Additionally, we propose a novel method to manage infeasible loads. Extensive simulations confirm that the design responds to instantaneous loads, heterogeneous user and AP locations, channel conditions, and QoS constraints while, if required, keeping outage low when dealing with infeasible loads. Comparisons to the baseline proportional fair scheme illustrate the gains achieved.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.