Abstract

Integration of unmanned aerial vehicles (UAVs) and edge computing into the wind farm routine inspection provides a promising approach to enhancing inspection effectiveness and decreasing operation maintenance costs. In light of the finite battery power and computational capacity of UAVs, a dynamic queue-aware UAV-assisted edge computing inspection wind farm framework is investigated with the goal of minimizing the long-term energy consumption of UAVs. The Lyapunov optimization theory is utilized to decouple the long-term stochastic optimization problem into four short-term deterministic subproblems, including the task splitting, the UAV-side computing resource allocation, the task offloading, and the edge server-side computing resource allocation. Furthermore, a Lyapunov optimization-based dynamic queue-aware computation offloading algorithm (LODQCO) is presented to optimize task offloading and resource allocation jointly. The optimal UAV-side computing resource is determined by a closed form formula, and then the optimal task offloading decision is tackled by applying the classical interior point method. Finally, the edge server-side computing resource is addressed via a linear optimization CPLEX solver. Based on simulation results, LODQCO is superior to the benchmark algorithms with respect to the energy consumption, queue backlogs, and queuing delays.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call