Abstract

Bacterial pathogens cause disease in man and animals. They have unique biological properties, which enable them to colonize mucous surfaces, penetrate them, grow in the environment of the host, inhibit or avoid host defences and damage the host. The bacterial products responsible for these five biological requirements are the determinants of pathogenicity (virulence determinants). Current knowledge comes from studies in vitro, but now interest is increasing in how bacteria behave and produce virulence determinants within the infected host. There are three aspects to elucidate: bacterial activities, the host factors that affect them and the metabolic interactions between the two. The first is relatively easy to accomplish and, recently, new methods for doing this have been devised. The second is not easy because of the complexity of the environment in vivo and its ever-changing face. Nevertheless, some information can be gained from the literature and by new methodology. The third aspect is very difficult to study effectively unless some events in vivo can be simulated in vitro. The objectives of the Discussion Meeting were to describe the new methods and to show how they, and conventional studies, are revealing the activities of bacterial pathogens in vivo. This paper sets the scene by raising some questions and suggesting, with examples, how they might be answered. Bacterial growth in vivo is the primary requirement for pathogenicity. Without growth, determinants of the other four requirements are not formed. Results from the new methods are underlining this point. The important questions are as follows. What is the pattern of a developing infection and the growth rates and population sizes of the bacteria at different stages? What nutrients are present in vivo and how do they change as infection progresses and relate to growth rates and population sizes? How are these nutrients metabolized and by what bacterial mechanisms? Which bacterial processes handle nutrient deficiencies and antagonistic conditions that may arise? Conventional and new methods can answer the first question and part of the second; examples are described. The difficulties of trying to answer the last two are discussed. Turning to production in vivo of determinants of mucosal colonization, penetration, interference with host defence and damage to the host, here are the crucial questions. Are putative determinants, which have been recognized by studies in vitro, produced in vivo and are they relevant to virulence? Can hitherto unknown virulence determinants be recognized by examining bacteria grown in vivo? Does the complement of virulence determinants change as infection proceeds? Are regulatory processes recognized in vitro, such as ToxR/ToxS, PhoP/PhoQ, quorum sensing and type III secretion, operative in vivo? What environmental factors affect virulence determinant production in vivo and by what metabolic processes? Examples indicate that the answers to the first four questions are 'yes' in most but not all cases. Attempts to answer the last, and most difficult, question are also described. Finally, sialylation of the lipopolysaccharide of gonococci in vivo by host-derived cytidine 5'-mono-phospho-N-acetyl neuraminic acid, and the effect of host lactate are described. This investigation revealed a new bacterial component important in pathogenicity, the host factors responsible for its production and the metabolism involved.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call