Abstract

Question answering (QA) is the task of finding out the correct answer given a question and a knowledge source such as unstructured text or structured knowledge base (KB). In contrast, the task of question generation (QG) is a reverse task to generate a corresponding natural language question given knowledge in structured (KB) or unstructured form (text) and optionally a target answer. The motivation for QG is to generate large scale high-quality QA training data, which will help in improving the performance of QA model and also in increasing the efficiency of human annotators in QA dataset construction. In this thesis, we study the problem of automatically generating meaningful, relevant and challenging questions from sentences, paragraphs, and knowledge base.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.