Abstract

In this study, we explore the possibilities of the deactivating pathways of organic thione containing systems through first-principles calculations. We particularly pay attention to the second lying singlet excited state, S2, due to its large energy difference from the lowest lying S1 state in the sulfur-containing systems. Several theoretical models including the previously synthesized thiones and the strategically designed molecules are investigated to search for the basic conjugation unit that exhibits the prospect of S2 fission. Various molecular motifs and different substituents are combined to maneuver the relative alignment of the relevant low excited energy states. The results lead us to conclude that the thione derivatives, under rational and delicate molecular designs, may be engineered to possess a sufficiently high S2-S1 energy gap as high as 2 eV and that these systems may exhibit S2 fission to triplet excitons in the red to near infrared region.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.