Abstract
How to query Linked Data effectively is a challenge due to its heterogeneous datasets. There are three types of heterogeneities, i.e., different structures representing entities, different predicates with the same meaning and different literal formats used in objects. Approaches based on ontology mapping or Information Retrieval (IR) cannot deal with all types of heterogeneities. Facing these limitations, we propose a hierarchical multi-hop language model (HMPM). It discriminates among three types of predicates, descriptive predicates, out-associated predicates and in-associated predicates, and generates multi-hop models for them respectively. All predicates’ similarities between the query and entity are organized into a hierarchy, with predicate types on the first level and predicates of this type on the second level. All candidates are ranked in ascending order. We evaluated HMPM in three datasets, DBpedia, LinkedMDB and Yago. The results of experiments show that the effectiveness and generality of HMPM outperform the existing approaches.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.