Abstract
Moving objects equipped with location-positioning devices continuously generate a large amount of spatio-temporal trajectory data. An interesting finding over a trajectory stream is a group of objects that are travelling together for a certain period of time. Existing studies on mining co-moving objects do not consider an important correlation between co-moving objects, which is the reoccurrence of the movement pattern. In this study, we define a problem of finding recurrent pattern of co-moving objects from streaming trajectories and propose an efficient solution that enables us to discover recent co-moving object patterns repeated within a given time period. Experimental results on a real-life trajectory database show the efficiency of our method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.