Abstract
The task of query-by-example spoken term detection (QbE-STD) is to find a spoken query within spoken audio data. Current state-of-the-art techniques assume zero prior knowledge about the language of the audio data, and thus explore dynamic time warping (DTW) based techniques for the QbE-STD task. In this paper, we use a variant of DTW based algorithm referred to as non-segmental DTW (NS-DTW), with a computational upper bound of O (mn) and analyze the performance of QbE-STD with Gaussian posteriorgrams obtained from spectral and temporal features of the speech signal. The results show that frequency domain linear prediction cepstral coefficients, which capture the temporal dynamics of the speech signal, can be used as an alternative to traditional spectral parameters such as linear prediction cepstral coefficients, perceptual linear prediction cepstral coefficients and Mel-frequency cepstral coefficients. We also introduce another variant of NS-DTW called fast NS-DTW (FNS-DTW) which uses reduced feature vectors for search. With a reduction factor of α ∈ ℕ, we show that the computational upper bound for FNS-DTW is O(mn/(α <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> )) which is faster than NS-DTW.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE/ACM Transactions on Audio, Speech, and Language Processing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.