Abstract
In recent years, researchers have begun to study inductive databases, a new generation of databases for leveraging decision support applications. In this context, the user interacts with the DBMS using advanced, constraint-based languages for data mining where constraints have been specifically introduced to increase the relevance of the results and, at the same time, to reduce its volume. In this paper we study the problem of mining frequent itemsets using an inductive database 1 . We propose a technique for query answering which consists in rewriting the query in terms of union and intersection of the result sets of other queries, previously executed and materialized. Unfortunately, the exploitation of past queries is not always applicable. We then present sufficient conditions for the optimization to apply and show that these conditions are strictly connected with the presence of functional dependencies between the attributes involved in the queries. We show some experiments on an initial prototype of an optimizer which demonstrates that this approach to query answering is not only viable but in many practical cases absolutely necessary since it reduces drastically the execution time.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.