Abstract

Query reformulation is one of the tasks in Information Retrieval (IR), which automatically creates new queries based on previous queries. The main challenge of query reformulation is to create a new query whose meaning or context is similar to the old query. Query reformulation can improve the search for relevant documents for Open-domain Question Answering (OpenQA). The more queries are given to the search system, and the more documents will be generated. We propose a Word Predicted and Substituted (WPS) method for query reformulation using a word embedding word2vec. We tested this method on the Indonesian Question Answering System (IQAS). The test results obtained an E-1 value of 81% and an E-2 value of 274%. These results prove that the query reformulation method with WPS and word-embedding can improve the search for potential IQAS answers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.