Abstract

Todays, XML as a de facto standard is used to broadcast data over mobile wireless networks. In these networks, mobile clients send their XML queries over a wireless broadcast channel and recieve their desired XML data from the channel. However, downloading the whole XML data by a mobile device is a challenge since the mobile devices used by clients are small battery powered devices with limited resources. To meet this challenge, the XML data should be indexed in such a way that the desired XML data can be found easily and only such data can be downloaded instead of the whole XML data by the mobile clients. Several indexing methods are proposed to selectively access the XML data over an XML stream. However, the existing indexing methods cause an increase in the size of XML stream by including some extra information over the XML stream. In this paper, a new XML stream structure is proposed to disseminate the XML data over a broadcast channel by grouping and summarizing the structural information of XML nodes. By summarizing such information, the size of XML stream can be reduced and therefore, the latency of retrieving the desired XML data over a wirless broadcast channel can be reduced. The proposed XML stream structure also contains indexes in order to skip from the irrelevant parts over the XML stream. It therefore can reduce the energy consumption of mobile devices in downloading the results of XML queries. In addition, our proposed XML stream structure can process different types of XML queries and experimental results showed that it improves the performace of XML query processing over the XML data stream compared to the existing research works in terms of access and tuning times.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.