Abstract
As the development of the semantic web, RDF data set has grown rapidly, thus causing the query problem of massive RDF. Using distributed technique to complete the SPARQL (Simple Protocol and RDF Query Language) Query is a new way of solving the large amounts of RDF query problem. At present, most of the RDF query strategies based on Hadoop have to use multiple MapReduce jobs to complete the task, resulting in waste of time. In order to overcome this drawback, MRQJ (using MapReduce to query and join) algorithm is proposed in the paper, which firstly uses a greedy strategy to generate join plan, then only one MapReduce job should be created to get the query results in SPARQL query execution. Finally, a contrast experiment on the LUBM (Lehigh University Benchmark) test data set is conducted, the results of which show that MRQJ method has a great advantage in the case that the query is more complicated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.