Abstract
SummaryThe goal of a query optimizer is to provide an optimal Query Execution Plan (QEP) by comparing alternative query plans. In a distributed database system over cloud environment, the relations required by a query plan may be stored at multiple sites. This leads to an exponential increase in the number of possible equivalent plan alternatives to find an optimal QEP. Although it is not computationally reasonable to explore exhaustively all possible plans in such large search space. Although query optimization mechanisms are important in the cloud environments, to the best of our knowledge, there exists no complete and systematic review on investigating these issues. Therefore, in this paper, four categories to study these mechanisms are considered which are search‐based, machine learning‐based, schema‐based, and security‐based mechanisms. Also, this paper represents the advantages and disadvantages of the selected query optimization techniques and investigates the metrics of their techniques. Finally, the important challenges of these techniques are reviewed to develop more efficient query optimization techniques in the future.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.