Abstract

A number of efficient methods for evaluating first-order and monadic-second order queries on finite relational structures are based on tree-decompositions of structures or queries. We systematically study these methods.In the first part of the article, we consider arbitrary formulas on tree-like structures. We generalize a theorem of Courcelle [1990] by showing that on structures of bounded tree-width a monadic second-order formula (with free first- and second-order variables) can be evaluated in time linear in the structure size plus the size of the output.In the second part, we study tree-like formulas on arbitrary structures. We generalize the notions of acyclicity and bounded tree-width from conjunctive queries to arbitrary first-order formulas in a straightforward way and analyze the complexity of evaluating formulas of these fragments. Moreover, we show that the acyclic and bounded tree-width fragments have the same expressive power as the well-known guarded fragment and the finite-variable fragments of first-order logic, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.