Abstract

It is desirable to answer queries posed to deductive databases by computing fixpoints because such computations are directly amenable to set-oriented fact processing. However, the classical fixpoint procedures based on bottom-up processing — the naive and semi-naive methods — are rather primitive and often inefficient. In this article, we rely on bottom-up meta-interpretation for formalizing a new fixpoint procedure that performs a different kind of reasoning: We specify a top-down query answering method, which we call the Backward Fixpoint Procedure. Then, we reconsider query evaluation methods for recursive databases. First, we show that the methods based on rewriting on the one hand, and the methods based on resolution on the other hand, implement the Backward Fixpoint Procedure. Second, we interpret the rewritings of the Alexander and Magic Set methods as specializations of the Backward Fixpoint Procedure. Finally, we argue that such a rewriting is also needed in a database context for implementing efficiently the resolution-based methods. Thus, the methods based on rewriting and the methods based on resolution implement the same top-down evaluation of the original database rules by means of auxiliary rules processed bottom-up.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.