Abstract
Adversarial attacks have been extensively studied in recent years since they can identify the vulnerability of deep learning models before deployed. In this paper, we consider the black-box adversarial setting, where the adversary needs to craft adversarial examples without access to the gradients of a target model. Previous methods attempted to approximate the true gradient either by using the transfer gradient of a surrogate white-box model or based on the feedback of model queries. However, the existing methods inevitably suffer from low attack success rates or poor query efficiency since it is difficult to estimate the gradient in a high-dimensional input space with limited information. To address these problems and improve black-box attacks, we propose two prior-guided random gradient-free (PRGF) algorithms based on biased sampling and gradient averaging, respectively. Our methods can take the advantage of a transfer-based prior given by the gradient of a surrogate model and the query information simultaneously. Through theoretical analyses, the transfer-based prior is appropriately integrated with model queries by an optimal coefficient in each method. Extensive experiments demonstrate that, in comparison with the alternative state-of-the-arts, both of our methods require much fewer queries to attack black-box models with higher success rates.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Pattern Analysis and Machine Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.