Abstract
Locality-Sensitive Hashing (LSH) and its variants are the well-known indexing schemes for the c -Approximate Nearest Neighbor ( c -ANN) search problem in high-dimensional Euclidean space. Traditionally, LSH functions are constructed in a query-oblivious manner in the sense that buckets are partitioned before any query arrives. However, objects closer to a query may be partitioned into different buckets, which is undesirable. Due to the use of query-oblivious bucket partition, the state-of-the-art LSH schemes for external memory, namely C2LSH and LSB-Forest, only work with approximation ratio of integer c ≥ 2. In this paper, we introduce a novel concept of query-aware bucket partition which uses a given query as the "anchor" for bucket partition. Accordingly, a query-aware LSH function is a random projection coupled with query-aware bucket partition, which removes random shift required by traditional query-oblivious LSH functions. Notably, query-aware bucket partition can be easily implemented so that query performance is guaranteed. We propose a novel query-aware LSH scheme named QALSH for c -ANN search over external memory. Our theoretical studies show that QALSH enjoys a guarantee on query quality. The use of query-aware LSH function enables QALSH to work with any approximation ratio c > 1. Extensive experiments show that QALSH outperforms C2LSH and LSB-Forest, especially in high-dimensional space. Specifically, by using a ratio c < 2, QALSH can achieve much better query quality.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.