Abstract

The death and disability caused by myocardial infarction is a health problem that needs to be addressed worldwide, and poor cardiac repair and fibrosis after myocardial infarction seriously affect patient recovery. Postmyocardial infarction repair by M2 macrophages is of great significance for ventricular remodeling. Quercitrin (Que) is a common flavonoid in fruits and vegetables that has antioxidant, anti-inflammatory, antitumor and other effects, but whether it has a role in the treatment of myocardial infarction is unclear. In this study, we constructed a mouse myocardial infarction model and administered Que. We found through cardiac ultrasound that Que administration improved cardiac ejection fraction and reduced ventricular remodeling. Staining of heart sections and detection of fibrosis marker protein levels revealed that Que administration slowed fibrosis after myocardial infarction. Flow cytometry showed that the proportion of M2 macrophages in the mouse heart was increased and that the expression levels of M2 macrophage markers were increased in the Que-treated group. Finally, we identified by metabolomics that Que reduces glycolysis, increases aerobic phosphorylation, and alters arginine metabolic pathways, polarizing macrophages toward the M2 phenotype. Our research lays the foundation for the future application of Que in myocardial infarction and other cardiovascular diseases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call