Abstract

Quercetin has been described as having a wide range of beneficial effects in humans, ranging from anti-carcinogenic properties to reducing the risk of CVD. Nevertheless, underlying molecular mechanisms have been mostly investigated in vitro. Here, we tested whether a daily supplementation of quercetin leads to reproducible changes in human monocyte gene expression profiles. In study I, quercetin in varying dosages was given to healthy subjects for 2 weeks. RNA from monocytes isolated at the beginning and end of the study from subjects receiving 150 mg quercetin per d was subjected to transcriptome-wide microarray analysis. In study II, a double-blind cross-over study, twenty subjects exhibiting a 'cardiovascular risk phenotype' received 150 mg quercetin or placebo daily for 6 weeks each and served as the verification group. Microarray analysis revealed a number of differentially expressed genes. The most significantly represented functional groups were those of the immune system, nucleic acid metabolism, apoptosis and O-glycan biosynthesis. Twenty-four genes were chosen for technical replication and independent verification by quantitative real-time PCR. When comparing placebo and quercetin treatment, four genes showed significantly different expression changes (C1GALT1, O-glycan biosynthesis; GM2A, glycolipid catabolism; HDGF, cell proliferation; SERPINB9, apoptosis). However, these were minimal in respect to magnitude of fold change. In conclusion, although microarray analysis revealed extensive effects of quercetin on gene expression, the employment of a placebo-controlled study design showed no comparable results for twenty-four verification targets. This emphasises the need for stringent designs in nutritional intervention studies with the aim to identify relevant changes in gene expression.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call