Abstract

Metal ion pollution poses serious threat to environment. Analysis of Cd (II) and Pb (II) ions using chemically modified mercury free electrode is a feasible routine analytical tool. Developing an electrode surface modified with conductive 2D carbon and metal complexing ligand created a synergetic effect towards sensitive and selective electrochemical determination of metal ions. The present study focused on green chemistry approach towards synthesis of reduced graphene oxide using a natural flavonoid (Quercetin) that acts as a reducing, functionalizing agent and also as metal complexing agent. This quercetin reduced graphene oxide (Q-rGO) was surface modified over paraffin wax impregnated graphite electrode. The resulting Q-rGO electrode was used as a mercury-free electrode for simultaneous analysis of Pb (II) and Cd (II) ions. Physico-chemical parameters of the synthesized Q-rGO and modified electrodes were characterized using X-ray diffraction, UV–Vis, FT-IR, and Raman spectrometer. The morphology of the material and surface topography of the modified electrode was observed using HR-TEM and FESEM, respectively. Cyclic voltammetry (CV) and AC impedance (EIS) were adopted for electrochemical characterization and Differential pulse anodic stripping voltammetry (DPASV) was chosen for simultaneous sensing of metal ions using Q-rGO electrode. Analytical parameters such as effect of electrolyte, effect of pH, preconcentration time and deposition potential were optimized. The experimental results suggested that the Q-rGO electrode is capable of sensing Pb (II) and Cd (II) ions individually and simultaneously. Inference from the calibration plot showed that the Q-rGO electrode was capable of sensing the concentration range of Cd (II) ion form 0.19 to 2.5 μgL−1 with LOD-0.05 μgL−1 and Pb (II) ions from 0.19 to 3.1 μgL−1 with LOD 0.06 μgL−1.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call