Abstract

Neuroinflammation contributes significantly to the pathogenesis of diabetic peripheral neuropathy (DPN). Quercetin reportedly exerts neuroprotective effects in DPN. Here, we aimed to evaluate the potential anti-inflammatory effects of quercetin in a DPN rat model. Eight weeks after streptozotocin administration, diabetic rats were treated with quercetin (30 and 60 mg/kg/day orally) for 6 weeks. We assessed the mechanical withdrawal threshold (MWT), nerve conduction velocity (NCV) and morphological changes in sciatic nerves. Additionally, we measured the levels of tumour necrosis factor-alpha (TNF-α), interleukin (IL)-1β, and IL-6 by ELISA and the expression of TLR4, MyD88, and NF-κB in sciatic nerves by western blotting and immunohistochemical assays. Our results revealed that blood glucose levels and body weight were unaltered following quercetin treatment. However, quercetin improved MWT (p < 0.05), NCV (p < 0.05), and pathological changes in the sciatic nerves of DPN rats. Quercetin significantly alleviated the increased expression of TNF-α (p < 0.05) and IL-1β (p < 0.001). Furthermore, high-dose quercetin administration significantly downregulated the expression of TLR4 (p < 0.001), MyD88 (p < 0.001), and NF-κB (p < 0.001) in sciatic nerves of DPN rats. Our findings revealed that quercetin could reduce the levels of inflammatory factors in DPN rats, possibly mediated via the downregulation of the TLR4/MyD88/NF-κB signalling pathway. Collectively, these results suggest that although quercetin did not decreased blood glucose levels or reversed the reduced body weight, it showed anti-inflammatory and neuroprotective effects, which was beneficial for the treatment of DPN.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call