Abstract
Quercetin, a widely distributed bioflavonoid, plays a role in combating diverse human cancers including non-small cell lung cancer (NSCLC). However, the role of quercetin in reversing the radioresistance of NSCLC cells and its underlying mechanism are far from being elucidated. Radiation-resistant NSCLC cell lines were established. Quantitative real-time PCR (qRT-PCR) was used to detect the expression of miR-16-5p and WEE1 G2 checkpoint kinase (WEE1) mRNA in radiation-resistant cells. After being treated with different concentrations of quercetin and different doses of X-ray, cell proliferation and apoptosis were monitored by CCK-8 assay, colony formation assay, and flow cytometry, respectively. Ultimately, the targeting relationship between miR-16-5p and WEE1 was verified via a dual fluorescent reporter gene assay. The expression of miR-16-5p was down-regulated in radiation-resistant cells, while the expression of WEE1 was up-regulated. Quercetin enhanced the radiosensitivity of NSCLC cells in a dose- and time-dependent manner. Furthermore, quercetin treatment increased the expression of miR-16-5p and decreased the expression of WEE1. The function of quercetin was reversed by miR-16-5p inhibitors or the transfection of WEE1 overexpressing plasmids. In conclusion, quercetin enhanced the radiosensitivity of NSCLC cells via modulating the expression of miR-16-5p and WEE1.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.