Abstract

Osteoarthritis treatment remains a significant clinical challenge. Quercetin, a natural flavonoid with anti-inflammatory and antiapoptotic properties, might be utilized to treat OA. However, poor water solubility and short joint retention duration limit its bioavailability and translation to clinical applications. A one-step self-assembly method was utilized to fabricate quercetin-loaded zeolitic imidazolate framework-8 (Qu@ZIF-8) nanoparticles using zinc ions, 2-methylimidazole, and quercetin. In vitro tests showed that Qu@ZIF-8 nanoparticles released pH-responsive agents into chondrocytes, effectively protecting them from interleukin (IL)-induced inflammation and apoptosis, thereby promoting cartilage anabolic activities. These underlying mechanisms revealed a remarkable increase of autophagy in IL-β-treated chondrocytes, followed by the inhibition of the Pi3k/Akt signaling pathway, which contributed to the protective effect of Qu @ZIF-8. By the establishment of medial meniscus instability (DMM) in OA mice, Qu@ZIF-8 substantially improved cartilage structural integrity and chondrocyte status, as well as attenuated OA progression. Importantly, Qu@ZIF-8 outperformed quercetin alone in the treatment of OA due to its control release. The combined research findings indicate that Qu@ZIF-8 shields chondrocytes from inflammation and apoptosis by activating autophagy and repressing the Pi3k/Akt pathway. This investigation may provide new insights for clinically extending the therapy of OA.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.