Abstract

Nanoplastics (NPs), which belong to emerging environmental pollutants, threaten environmental sustainability and human health. Despite recent studies have reported that NPs damage the gastrointestinal tract and immune homeostasis, the underlying mechanisms remain unclear. Polyphenols have been found to promote NPs excretion by interacting with intestinal flora (IF). However, the potential mechanisms and action targets of this are still poorly understood. To address these knowledge gaps, we investigated the impact of quercetin and three concentrations of polystyrene nanoplastics (PS-NPs) in mice using an integrated phenotypic and multi-omics analysis. Our findings demonstrated that PS-NPs accumulate within the intestine, resulting in impairments to intestinal tissue and barrier function, as well as disturbing the expression of immune-response small intestinal genes and composition of IF. Exposure to PS-NPs significantly elevate the level of intestinal IgG and CD20+ B cells, while inhibiting T cells activation. Furthermore, PS-NPs could induce systemic immune and serum insulin level disorders. Quercetin might mitigate PS-NPs-induced intestinal damage and immune disorders though reversing IF disorders, gene expression changes, and their interaction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.