Abstract

Exogenous factors such as food components including the flavonoid quercetin are suspected to influence micro RNA (miRNA) concentrations and thus possibly target enzymes involved in xenobiotic metabolism. This study therefore investigates the influence of orally administered quercetin on hepatic miRNA and the identification of enzyme target mRNAs relevant in drug metabolism. Male Wistar rats (n=16) were fed either a diet without (C) or with (Q) the addition of 100-ppm quercetin for 7 weeks and subsequently euthanized at the end of the dark phase. To avoid strong effects of food deprivation on hepatic metabolism, food was not removed until 5 h prior to the procedure. Liver was immediately dissected and snap-frozen in liquid nitrogen. Concentrations of 352 hepatic miRNA were measured in pool samples of each dietary group (n=8) using the RT2 miRNA PCR Array System. Differential expression of miRNAs was assumed with fold changes ≥3. Target genes of differentially expressed miRNAs were identified using the database TargetScan. Because rno-miR-125b-3p showed the most prominent fold-change (−9) we further analyzed the expression of its top predicted target gene gamma-glutamyl hydrolase (GGH) by quantitative real-time PCR using hypoxanthine phosphoribosyltransferase 1 (hprt1) as endogenous control. Compared to controls, 23 miRNAs were differentially expressed in rats fed quercetin. A ninefold reduction in hepatic miRNA rno-miR-125b-3p was paralleled by significant induction of GGH mRNA in liver of quercetin fed rats. Because increased GGH expressions were repeatedly associated with resistance to methotrexate, concomitant intake with quercetin should be monitored carefully.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.