Abstract
Several studies have found that chronic treatment with the dietary flavonoid quercetin lowers blood pressure and restores endothelial dysfunction in hypertensive animal models. We hypothesized that increased endothelial nitric oxide synthase (eNOS) and/or decreased nicotinamide adenine dinucleotide phosphate (NADPH) oxidase protein expression and activity, and reduced reactive oxygen species might be involved in the improvement of endothelial function induced by quercetin in spontaneously hypertensive rats (SHR). Male SHR and Wistar-Kyoto (WKY) rats (5 weeks old) were treated with quercetin (10 mg/kg) or vehicle for 13 weeks. Changes in vascular expression of eNOS, caveolin-1 and p47 were analysed by Western blot, eNOS activity by conversion of [H]arginine to L-[H]citrulline, and NADPH oxidase activity by NADPH-enhanced chemoluminescence of lucigenin. In SHR, quercetin reduced the increase in blood pressure and heart rate and enhanced the endothelium-dependent aortic vasodilation induced by acetylcholine, but had no effect on the endothelium-independent response induced by nitroprusside. However, quercetin had no effect on endothelium-dependent vasoconstriction and aortic thromboxane B2 production. Compared to WKY, SHR showed upregulated eNOS and p47 protein expression, downregulated caveolin-1 expression, increased NADPH-induced superoxide production but, paradoxically, eNOS activity was reduced. Chronic quercetin treatment prevented all these changes in SHR. In WKY, quercetin had no effect on blood pressure, endothelial function or the expression or activity of the proteins analysed. Enhanced eNOS activity and decreased NADPH oxidase-mediated superoxide anion (O2) generation associated with reduced p47 expression appear to be essential mechanisms for the improvement of endothelial function and the antihypertensive effects of chronic quercetin.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Journal of Hypertension
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.