Abstract

Cancer metastasis, involving multiple processes and various cytophysiological changes, is a primary cause of cancer death and may complicate the clinical management, even lead to death. Quercetin is a flavonoid and widely used as an antioxidant and recent studies have revealed its pleiotropic anticancer and antiproliferative capabilities. Gelatinases A and B (matrixmetalloproteinases 2 and 9) are enzymes known to involve in tumor invasion and metastases. In this study, we observed the precise involvement of quercetin role on these proteinases expression and activity. PC-3 cells were treated with quercetin at various concentrations (50 and 100 microM), for 24 h period and then subjected to western blot analysis to investigate the impact of quercetin on matrix metalloproteinase-2 (MMP-2) and 9 (MMP-9) expressions. Conditioned medium and cell lysate of quercetin-treated PC-3 cells were subjected to western blot analysis for proteins expression of MMP-2 and MMP-9. Gelatin zymography was also performed in quercetin treated PC-3 cells. The results showed that quercetin treatment decreased the expressions of MMP-2 and MMP-9 in dose-dependent manner. The level of pro-MMP-9 was found to be high in the 100 microM quercetin-treated cell lysate of PC-3 cells, suggesting inhibitory role of quercetin on pro-MMP-9 activation. Gelatin zymography study also showed the decreased activities of MMP-2 and MMP-9 in quercetin treated cells. Hence, we speculated that inhibition of metastasis-specific MMPs in cancer cells may be one of the targets for anticancer function of quercetin, and thus provides the molecular basis for the development of quercetin as a novel chemopreventive agent for metastatic prostate cancer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.