Abstract

Inflammatory chemokines, such as macrophage-derived chemokine (MDC/CCL22), are elevated in the serum and lesioned skin of patients with atopic dermatitis (AD), and are ligands for C-C chemokine receptor 4, which is predominantly expressed on T helper 2 lymphocytes, basophils and natural killer cells. We have previously reported that quercetagetin has an inhibitory activity on inflammatory chemokines, which is induced by interferon (IFN)-γ and tumour necrosis factor (TNF)-α, occurring via inhibition of the signal transducer and activator of transcription 1 (STAT1) signal. To investigate the specific mechanisms of quercetagetin on the STAT1 signal. We confirmed the inhibitory activity of quercetagetin on MDC and STAT1 in HaCaT keratinocytes. The interaction between STAT1 and IFN-γR1 was investigated using immunoprecipitation. The small interfering RNA approach was used to investigate the role of suppressor of cytokine signalling 1 (SOCS1) and transforming growth factor (TGF)-β1 induced by quercetagetin. Quercetagetin inhibited the expression of MDC at both the protein and mRNA levels in IFN-γ- and TNF-α-stimulated HaCaT human keratinocytes. Moreover, quercetagetin inhibited the phosphorylation of STAT1 through upregulation of SOCS1. Increased expression of SOCS1 disrupted the binding of STAT1 to IFN-γR1. Furthermore, quercetagetin augmented the expression of TGF-β1, which is known to modulate the immune response and inflammation. These results suggest that quercetagetin may be a potent inhibitor of the STAT1 signal, which could be a new molecular target for anti-inflammatory treatment, and may thus have therapeutic applications as an immune modulator in inflammatory diseases such as AD.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call